DEVELOPING TRANSFORMATIVE THERAPIES FOR RETINAL DISEASES

IVERIC BIC

March 2021 NASDAQ: ISEE

FORWARD-LOOKING STATEMENTS

Any statements in this presentation about the Company's future expectations, plans and prospects constitute forward-looking statements for purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995. Forward-looking statements include any statements about the Company's strategy, future operations and future expectations and plans and prospects for the Company, and any other statements containing the words "anticipate," "believe," "estimate," "expect," "intend", "goal," "may", "might," "plan," "predict," "project," "seek," "target," "bottom," and similar expressions.

In this presentation, the Company's forward looking statements include statements about its expectations regarding patient enrollment and retention in its second Phase 3 trial (GATHER2) of Zimura in geographic atrophy secondary to AMD and use of its completed clinical trial of Zimura for the treatment of geographic atrophy secondary to AMD (GATHER1) as a Phase 3 trial, its development and regulatory strategy for Zimura and its other product candidates, including additional indications that the Company may pursue for the development of Zimura and IC-500, the Company's hypotheses regarding complement inhibition and HtrA1 inhibition as potential mechanisms of action for the treatment of retinal diseases, the implementation of its business and hiring plan, the projected use of cash and cash balances, the timing, progress and results of clinical trials and other research and development activities, including regulatory submissions, the clinical meaningfulness of clinical trial results, the potential utility of its product candidates, estimates regarding the number of patients affected by the diseases and indications the Company's product candidates are intended to treat and statements regarding the potential for the Company's business development strategy.

Such forward-looking statements involve substantial risks and uncertainties that could cause the Company's research and development programs, future results, performance or achievements to differ significantly from those expressed or implied by the forward-looking statements. Such risks and uncertainties include, among others, those related to the progression and duration of the COVID-19 pandemic and responsive measures thereto and related effects on the Company's research and development programs, operations and financial position, the initiation and the progress of research and development programs and clinical trials, including enrollment and retention in clinical trials, availability of data from these programs, reliance on contract development and manufacturing organizations, university collaborators and other third parties, establishment of manufacturing capabilities, expectations for regulatory matters, developments from the Company's research or additional financing and other factors discussed in the "Risk Factors" section contained in the quarterly and annual reports that the Company files with the Securities and Exchange Commission.

Any forward-looking statements represent the Company's views only as of the date of this presentation. The Company anticipates that subsequent events and developments will cause its views to change. While the Company may elect to update these forward-looking statements at some point in the future, the Company specifically disclaims any obligation to do so except as required by law.

IVERIC

A DIVERSIFIED PORTFOLIO FOCUSED ON RETINAL DISEASES

Therapeutics for Age-Related Retinal Diseases (Large Market)

- Zimura (C5 inhibitor):
 - Positive data for the first of two Phase 3 trials (GATHER1)
 - Statistically significant 27% reduction in GA growth over 12 months (primary endpoint achieved)
 - Targeting completion of patient enrollment for second Phase 3 trial (GATHER2) 3Q 2021
 - Potential expansion into intermediate AMD, wet AMD and lifecycle initiatives
- IC-500 (HtrA1 Inhibitor): Complementary MOA adding to development stage AMD franchise

Gene Therapy for Inherited Retinal Diseases (Orphan)

- Broad and diversified pipeline
 - Novel and cutting edge AAV gene therapy options
 - Five programs in orphan inherited retinal diseases w/ no currently approved therapies

IVERIC

BIO

Experienced Team with Extensive Drug Development Expertise in Retina

Strong Cash Position and Well-Capitalized

• ~\$210 million in cash and marketable securities as of 12/31/20

STRONG SENIOR TEAM WITH SIGNIFICANT OPHTHALMOLOGY EXPERIENCE

GLENN SBLENDORIO Chief Executive Officer	The Medicines Company	eyetech	Roche	MPM	
PRAVIN DUGEL, MD Chief Strategy and Business Officer	6	USC Roski Eye Institute Keck Medicine of USC	Ø Spectra Eye Institute	UCLA 25	COLUMBIA UNIVERSITY
DAVID CARROLL Chief Financial Officer	The Medicines Company	Genentech A Member of the Roche Group	NOVARTIS	🖗 Bristol-Myers Squ	uibb
KEITH WESTBY Chief Operating Officer	Pharmasset	eyetech	CREATE Stronger Performance Ahaad	Roche	Pfizer
ABRAHAM SCARIA, PHD Chief Scientific Officer		SANOFI	GENZYME A SANOFI COMPANY		
EVELYN HARRISON Chief Clinical Operations Officer	eyetech	Roche			
DHAVAL DESAI, PHARMD Chief of Staff		ThromboGenics'	aerpio	NOVARTIS	

IVERIC BIC

IVERIC BIO PIPELINE

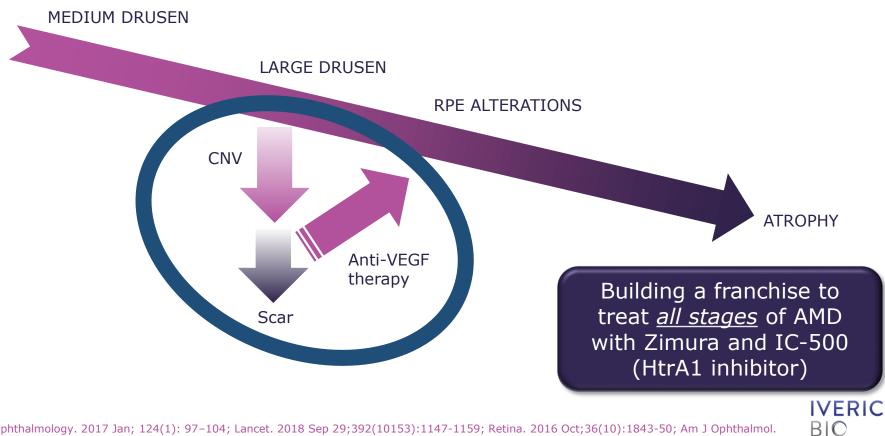
_	Indication	Res	Pre-clin	P1	P2	Р3	Milestones
Therapeutics	Zimura: GA secondary to AMD						 GATHER1 (1st Phase 3): Positive 12 & 18-month data reported GATHER2 (2nd Phase 3): Target completion of enrollment <u>3Q 2021</u>
	Zimura: Stargardt Disease						 Expanded enrollment (up to ~25 additional patients) ongoing
	IC-500 (anti-HtrA1): GA secondary to AMD						 Plan to file IND in <u>2H 2022</u>
AAV Gene Therapies	IC-100: RHO-adRP						 Plan to initiate Phase 1/2 in <u>2H 2021</u>
	IC-200: BEST1-related IRDs						 Plan to initiate Phase 1/2 in <u>2H 2021</u>
	miniCEP290: LCA10						 Identify lead construct in <u>20 2021</u>
	miniABCA4: Stargardt Disease*						 Additional results expected in <u>1H 2021</u>
	miniUSH2A: USH2A-related IRDs*						 Preliminary results expected in <u>1H 2021</u>

IVERIC

BIO

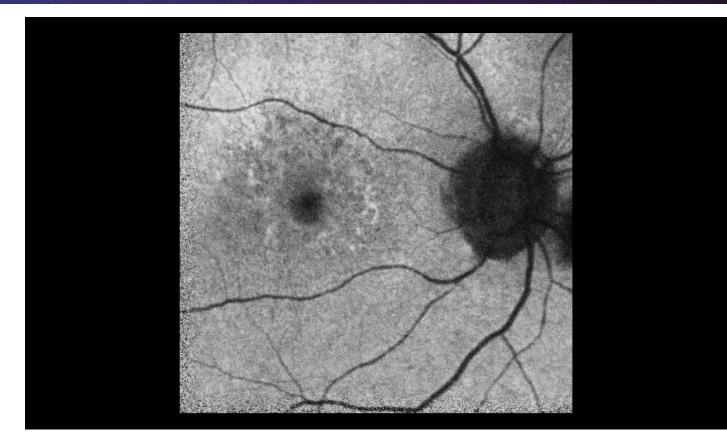
WHAT IS AGE-RELATED MACULAR DEGENERATION (AMD)?

AMD LEADS TO PROGRESSIVE VISION LOSS WITH END-STAGE ATROPHY


IVERIC BIC

COMMON PERCEPTION: ADVANCED AMD IS <u>EITHER</u> DRY (LEADING TO GA) <u>OR</u> WET

FARLY DRY AMD DEPOSITS LATE DRY AMD "GEOGRAPHIC ATROPHY" NORMAL "NEOVASCULAR" AMD A A PART RIVALDA


IVERIC BIC

PATHWAY OF AMD DISEASE PROGRESSION

9

GEOGRAPHIC ATROPHY: GROWTH OVER TIME

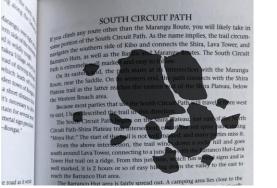
IVERIC BIO

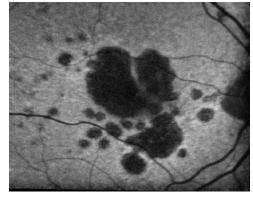
GEOGRAPHIC ATROPHY: GROWTH OF AREA & LOSS OF VISION

GEOGRAPHIC ATROPHY: LOSS OF PHOTORECEPTORS OVER TIME

RETINA		• 5	• ()-	×
Natural Progression: 25% Reduction: 50% Reduction:			\rightarrow	>
	Some loss of peripheral, low light vision. Patient only notices under	Loss of peripheral, low light vision. Patient compensates.	Loss of peripheral, low light vision; patches of lost central vision.	Loss of central vision Patient is "blind."

INCREASE IN AREA OF DEGENERATION OVER TIME




IVERIC

BIO

LOSS OF VISION OVER TIME

GEOGRAPHIC ATROPHY: IMPACT ON FUNCTIONAL VISION IN DAILY LIFE

Areas of missing vision (scotoma)

Areas of geographic atrophy (Dead retinal cells) Areas of missing vision (scotoma)

WHAT DOES COMPLEMENT HAVE TO DO WITH AMD?

GENETIC LINK: COMPLEMENT & AMD

"IN INDIVIDUALS HOMOZYGOUS FOR THE RISK ALLELE, THE LIKELIHOOD OF AMD IS INCREASED BY A FACTOR OF 7.4"

A common haplotype in the complement regulatory gene factor H (*HF1/CFH*) predisposes individuals to age-related macular degeneration

Gregory S. Hageman^{a,b,c}, Don H. Anderson^{b,d}, Lincoln V. Johnson^{b,d}, Lisa S. Hancox^a, Andrew J. Talber^a, Lisa I. Hardisty^a, Jill L. Hageman^a, Heather A. Stockman^a, James D. Borchardt^a, Karen M. Gehrs^a, Richard J. H. Smith^a, Giuliana Silvestrl⁴, Stephen R. Russell^a, Caroline C. W. Klaver^a, Irene Barbazetto^b, Stanley Chang^b, Lawrence A. Yannuzz^b, Gaetano R. Barile^b, John C. Merriam^b, R. Theodore Smith^b, Adam K. Olshⁱ, Julie Bergeronⁱ, Jana Zernant^b, Joanna E. Merriam^b, Bert Goldⁱ, Michael Deanⁱ, and Rando Allikmets^{b,k,J}

Source: Proc Natl Acad Sci U S A 2005, 102(20), 7227-7232

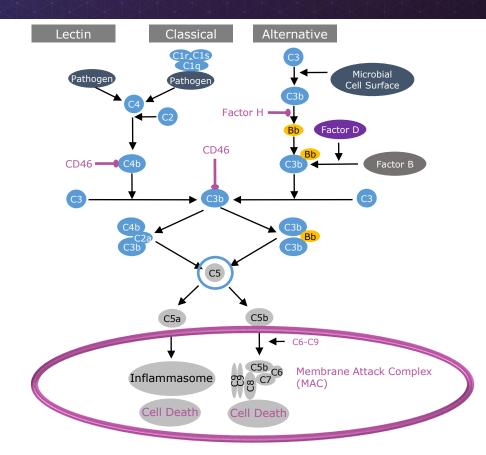
Complement Factor H Polymorphism in Age-Related Macular Degeneration

Robert J. Klein,¹ Caroline Zeiss,^{2*} Emily Y. Chew,^{3*} Jen-Yue Tsai,^{4*} Richard S. Sackler,¹ Chad Haynes,¹ Alice K. Henning,⁵ John Paul SanGiovanni,³ Shrikant M. Mane,⁶ Susan T. Mayne,⁷ Michael B. Bracken,⁷ Frederick L Ferris,³ Jurg Ott,¹ Colin Barnstable,² Josephine Hoh⁷†

Source: Science. 2005 Apr 15;308(5720):385-389

Complement Factor H Variant Increases the Risk of Age-Related Macular Degeneration

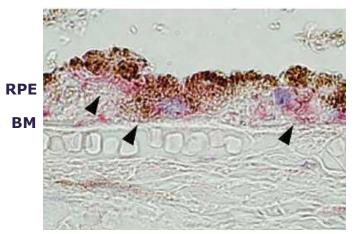
Jonathan L. Haines,¹ Michael A. Hauser,² Silke Schmidt,² William K. Scott,² Lana M. Olson,¹ Paul Gallins,² Kylee L. Spencer,¹ Shu Ying Kwan,² Maher Noureddine,² John R. Gilbert,² Nathalie Schnetz-Boutaud,¹ Anita Agarwal,³ Eric A. Postel,⁴ Margaret A. Pericak-Vance²*


Source: Science 2005, 308(5720), 419-421

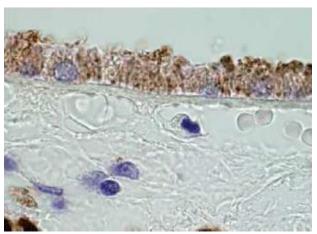
Complement Factor H Polymorphism and Age-Related Macular Degeneration

Albert O. Edwards, ^{1*†} Robert Ritter III, ¹ Kenneth J. Abel,² Alisa Manning,³ Carolien Panhuysen, ^{3,6} Lindsay A. Farrer^{3,4,5,6,7}

Source: Science 2005, 308(5720), 421-424

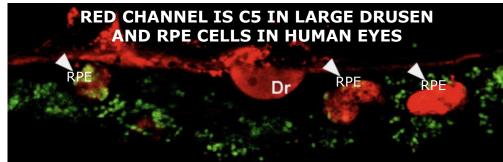


IVERIC

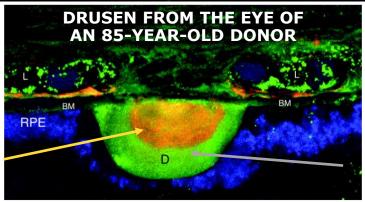

BIO

INFLAMMASOME ACTIVATION LEADING TO CELL DEATH IN AMD AFFECTED EYES

NO AMD



RPE: Retinal pigment Epithelium BM: Bruch's membrane

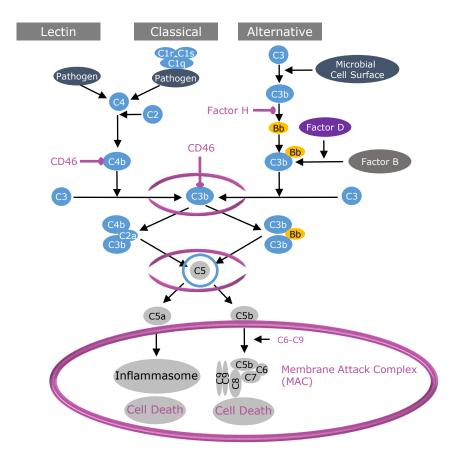


16 Source: Invest Ophthalmol Vis Sci. 2013;54:110–120.

PRESENCE OF C5 AND MAC ACTIVATION LEADING TO CELL DEATH IN AMD

C5-9 membrane attack complex of complement

Complement factor H



17 Source: Am J Ophthalmol 2002;134:411–431. Proc Natl Acad Sci USA. 2005, 102(20), 7053-7054.

WHY IS ZIMURA® IMPORTANT?

COMPLEMENT PATHWAY

IVERIC

BIO

Inhibit the 2 triggers of cell death, preserving the remainder of pathway

DO WE HAVE EVIDENCE OF ZIMURA'S EFFICACY IN GA?

ZIMURA PHASE 1/2A DRY AMD (GA) – COMPLETED*

STUDY DESIGN

Intravitreal Zimura was administered for a maximum of 5 injections at one of two dose levels (0.3 mg/eye or 1mg/eye)

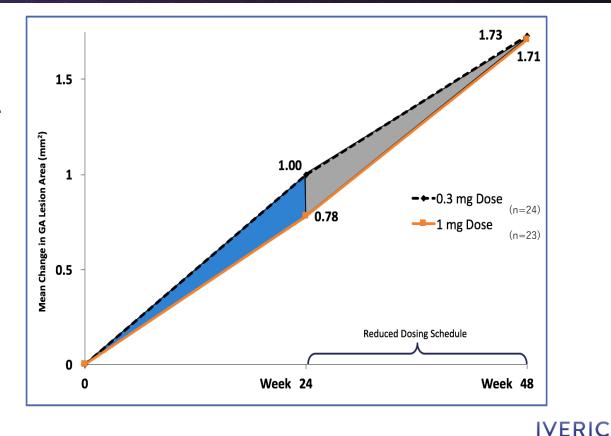
47 PATIENTS ENROLLED

0.3 mg dose group (n=24)

1 mg dose group (n=23)

IVERIC

BIO


ZIMURA PHASE 1/2A DRY AMD (GA) – COMPLETED

POTENTIAL EFFICACY SIGNAL

 Presence of a dose-response trend with "on-off effect"

SAFETY

- No Zimura related adverse events
- Zero incidence of wet AMD in eyes treated with Zimura

BIO

ZIMURA PHASE 3 PROGRAM IN GEOGRAPHIC ATROPHY SECONDARY TO AMD

IVERIC

BIC

(Geographic Atrophy Therapy Trials)

GATHER1 (OPH2003): TRIAL DESIGN

- Screening trial: designed similar to a traditional Phase 3 but with fewer patients
- Minimized bias: patient, evaluating physician, reading center, sponsor are all masked
- Valid control: sham control arm
- Independent masked reading center reviewing the images; images for each visit were evaluated independently
- Robust statistical analysis: prespecified statistical analysis plan (SAP) and detailed sensitivity testing
- Prespecified strength of evidence needed to meet the standard requirement of a <u>0.0125 one-sided false positive error rate</u> (incorporating an adjustment for multiplicity arising from comparing each dose with the Sham control) to achieve statistical significance

GATHER1: PRESPECIFIED SCREENING TRIAL

DESIGNED AS A REGISTRATION TRIAL WITH THREE POTENTIAL OUTCOMES:

Negative Trial:

 Low level or no benefit observed: would not move forward with a subsequent trial

Positive Phase 2 Trial:

 Moderate, clinically relevant benefit but without statistically significant
 p-value: move forward with two larger Phase 3 clinical trials

Positive Phase 3 Trial:

 Statistically significant benefit (as observed in both Zimura 2 mg and 4 mg groups): trial could potentially serve as a registration trial and only one more Phase 3 trial would be required for regulatory approval

GATHER1: TRIAL DESIGN

- Randomized, masked (patient, evaluating physician, reading center, sponsor), sham controlled clinical trial
- Cohorts included in the pre-specified statistical analysis of the primary endpoint at Month 12*:
 - Zimura 4 mg dose
 - Zimura 2 mg dose
 - Sham
- 286 subjects were enrolled for monthly treatment with Zimura or Sham for 18 months
 - ~75% of the patients were enrolled in the US
- Primary efficacy endpoint: Mean rate of change in GA over 12 months measured by fundus autofluorescence (FAF) at three time points: Baseline, Month 6, and Month 12 (square root transformation of GA lesion)

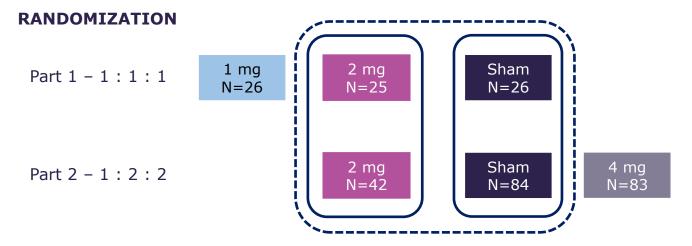
IVERIC

BIO

DUKE READING CENTER: IMAGING ANALYSIS OVERVIEW

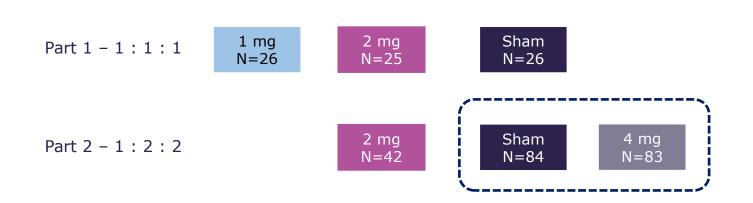
- Completely masked assessment
- Images for each visit evaluated independently
- Two experienced primary readers analyze the GA lesion size on FAF with RegionFinder
- > 10% discrepancy will be arbitrated by Reading Center Director: Glenn Jaffe, MD
- Supportive modalities: OCT and NIR imaging

IVERIC


BIO

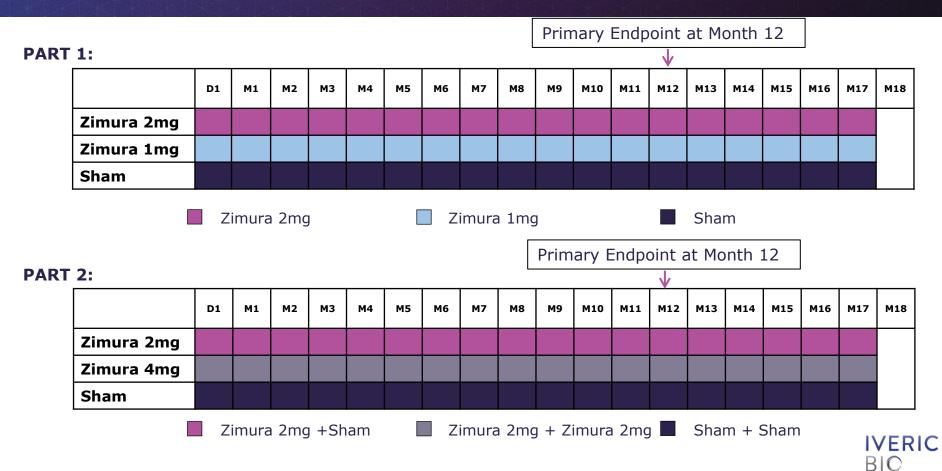
GATHER1: DOSE GROUPS

MASKED THROUGHOUT THE ENTIRE PROCESS


IVERIC

BIO

EFFICACY EVALUATION BASED ON PRESPECIFIED STATISTICAL ANALYSIS PLAN (SAP):


 Zimura 2 mg vs. Sham: subjects randomized from Part 1 were combined with the subjects randomized from Part 2, where the analysis included a regression factor by part RANDOMIZATION

EFFICACY EVALUATION BASED ON PRESPECIFIED STATISTICAL ANALYSIS PLAN (SAP):

• Zimura 4 mg vs. Sham: based only on subjects randomized in Part 2

GATHER1: DOSING REGIMEN

GATHER1: KEY OPHTHALMIC INCLUSION CRITERIA (STUDY EYE)

- <u>Non-foveal</u> GA secondary to dry AMD
- Total GA area ≥ 2.5 and ≤ 17.5 mm² (1 and 7 disk areas [DA] respectively), determined by screening images of FAF
- If GA is multifocal, at least one focal lesion should measure \geq 1.25 mm² (0.5 DA)
- GA in part within 1500 microns from the foveal center
- The atrophic lesion must be able to be photographed in its entirety
- Best corrected visual acuity in the SE between 20/25 20/320, inclusive

IVERIC

BIO

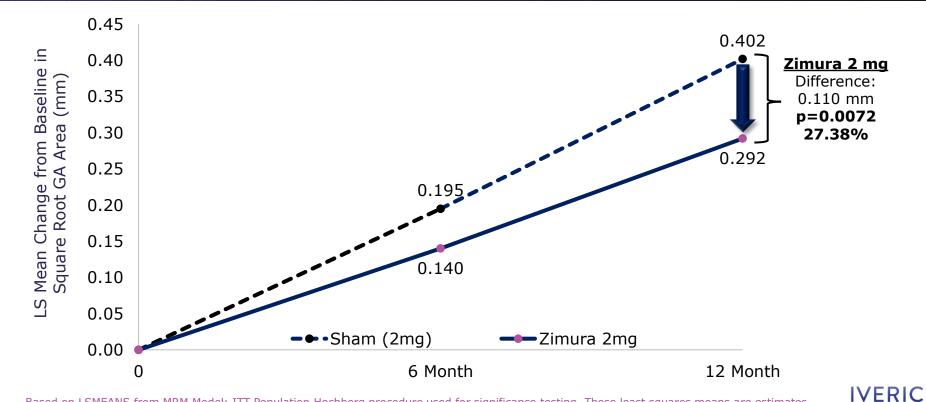
GATHER1: PRIMARY EFFICACY ENDPOINT ACHIEVED FOR BOTH ZIMURA 2MG AND 4MG

Mean Rate of Change in Geographic Atrophy (GA) Area from Baseline to Month 12 (MRM Analysis) (Square Root Transformation, ITT Population)

Cohort	Zimura 2mg (N=67)	Sham 2mg (N=110)	Difference	P-value	% Difference
Mean Change in GA ^(a)	0.292 ^(c)	0.402 ^(c)	0.110	0.0072 ^(b)	27.38%
Cohort	Zimura 4mg (N=83)	Sham 4mg (N=84)	Difference	P-value	% Difference
Mean Change in GA ^(a)	0.321	0.444	0.124	0.0051 ^(b)	27.81%

IVERIC

RIC

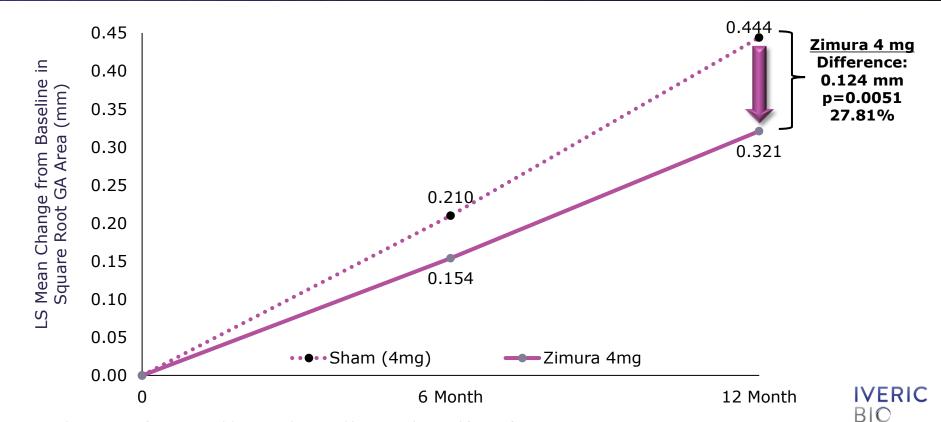

(a) = mm, based on the least squares means from the MRM model

(b) = reflects statistically significant p-value; Hochberg procedure was used for significance testing

(c) = these least squares means are estimates of the MRM model, drawing on all available data, including data from groups with different randomization ratios

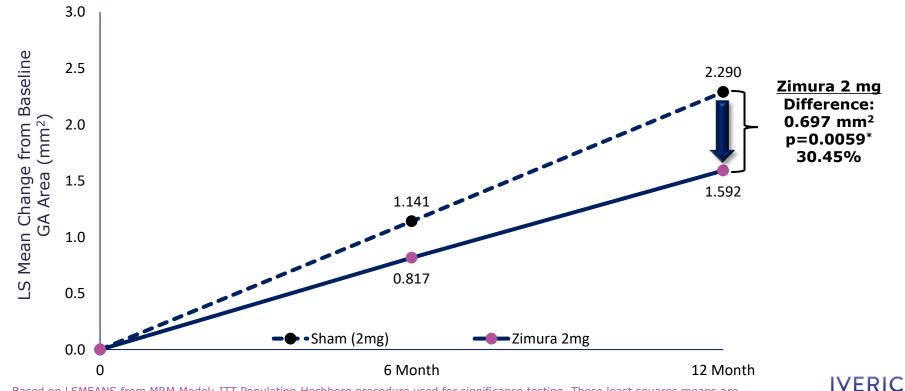
in Part 1 and Part 2, and should not be interpreted as directly observed data

GATHER1: PRIMARY EFFICACY ENDPOINT ACHIEVED: ZIMURA 2 MG VS. SHAM



BIO

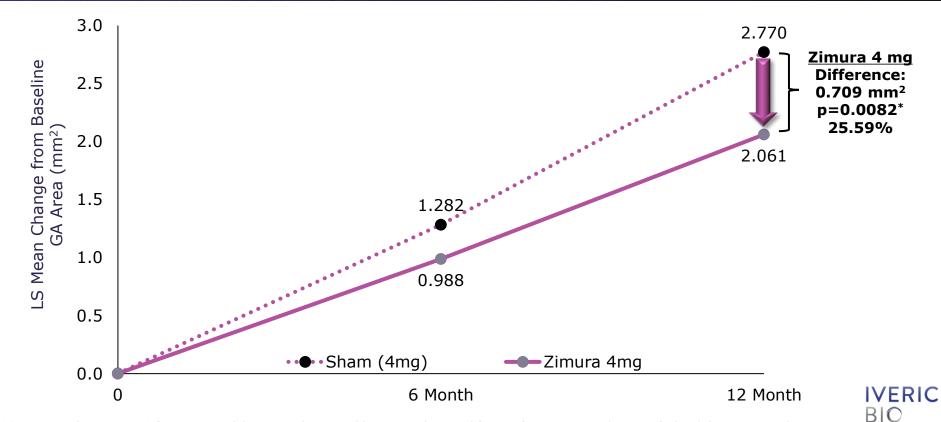
Based on LSMEANS from MRM Model; ITT Population Hochberg procedure used for significance testing. These least squares means are estimates of the MRM model, drawing on all available data, including data from groups with different randomization ratios in Part 1 and Part 2, and should not be interpreted as directly observed data.


33

GATHER1: PRIMARY EFFICACY ENDPOINT ACHIEVED: ZIMURA 4 MG VS. SHAM

34 Based on LSMEANS from MRM Model; ITT Population Hochberg procedure used for significance testing

GATHER1: SUPPORTIVE EFFICACY ENDPOINT: ZIMURA 2 MG VS. SHAM (NON-SQUARE ROOT)



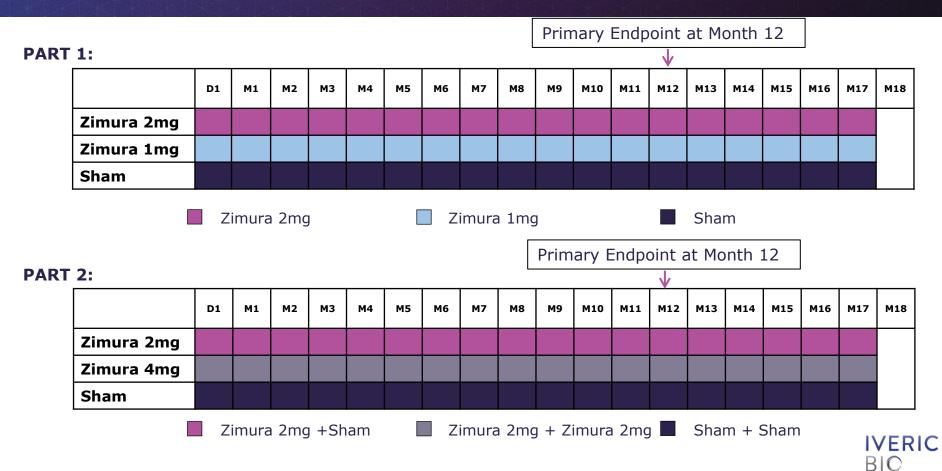
BIO

Based on LSMEANS from MRM Model; ITT Population Hochberg procedure used for significance testing. These least squares means are estimates of the MRM model, drawing on all available data, including data from groups with different randomization ratios in Part 1 and Part 2 and should not be interpreted as directly observed data. *Prespecified and descriptive analysis.

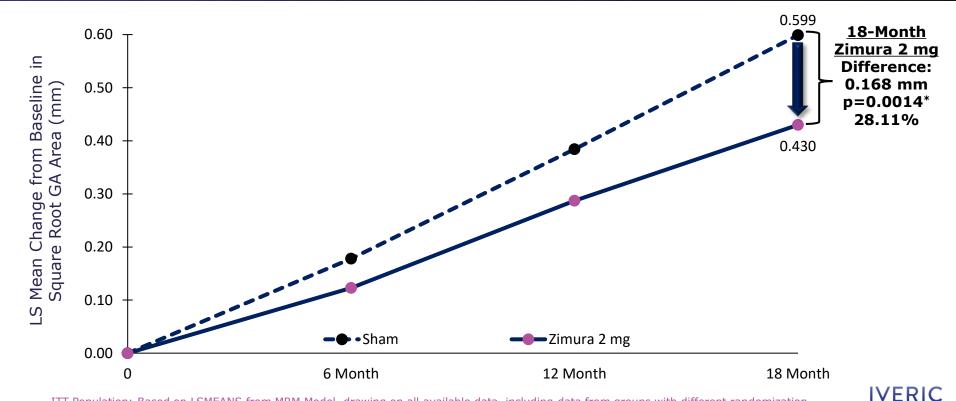
35

GATHER1: SUPPORTIVE EFFICACY ENDPOINT: ZIMURA 4 MG VS. SHAM (NON-SQUARE ROOT)

36 Based on LSMEANS from MRM Model; ITT Population Hochberg procedure used for significance testing. *Prespecified and descriptive analysis.

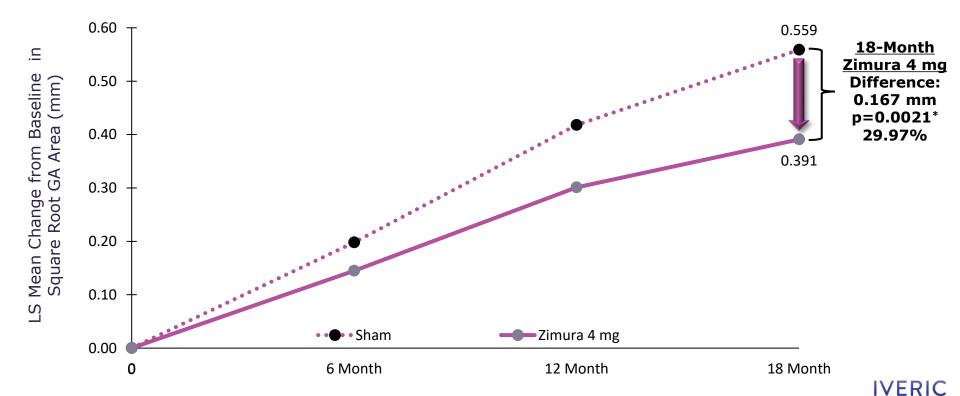

GATHER1: PRELIMINARY SAFETY ANALYSIS THROUGH MONTH 12*

FAVORABLE SAFETY PROFILE TO DATE


- Zimura was generally well tolerated after 12 months of administration
- No Zimura-related adverse events
- No Zimura-related inflammation
- No drug-related discontinuations from the trial attributed to Zimura
- No serious ocular adverse events in the study eye related to Zimura
- No cases of endophthalmitis reported in the clinical trial
- The most frequently reported ocular adverse events were related to the injection
 procedure
- Incidence of CNV in the untreated fellow eye was 10 patients (3.5%), and in the study eye was 3 patients (2.7%) in the sham control group, 1 patients (4.0%) in the Zimura 1 mg group, 6 patients (9.0%) in the Zimura 2 mg group, and 8 patients (9.6%) in the Zimura 4 mg group.

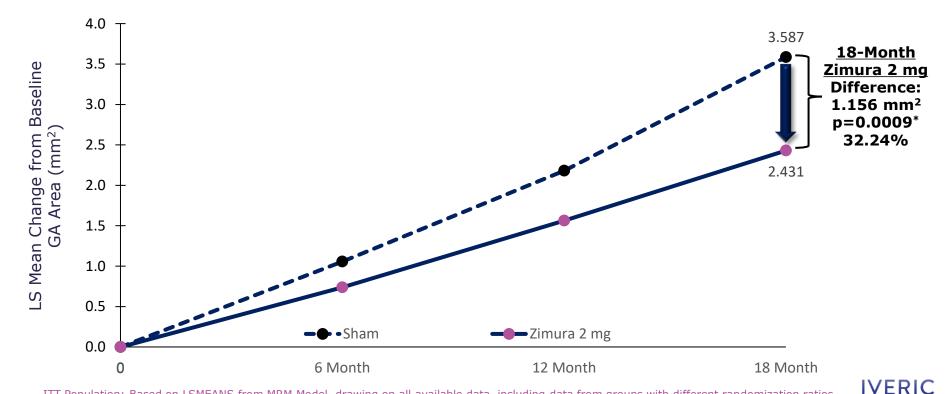
BIO

GATHER1: DOSING REGIMEN


GATHER1: DECREASE IN GA GROWTH OVER 18 MONTHS ZIMURA 2 MG VS. SHAM (SQUARE ROOT TRANSFORMATION)

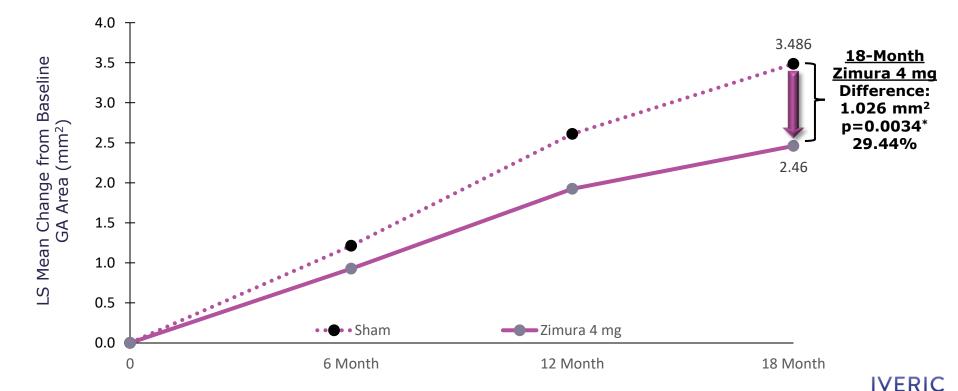
BIO

ITT Population; Based on LSMEANS from MRM Model, drawing on all available data, including data from groups with different randomization ratios in Part 1 and Part 2, and should not be interpreted as directly observed data; Prespecified and descriptive analysis. *18 month p values are descriptive in nature.


GATHER1: DECREASE IN GA GROWTH OVER 18 MONTHS ZIMURA 4 MG VS. SHAM (SQUARE ROOT TRANSFORMATION)

BIO

ITT Population; Based on the least squares means from the MRM Model drawing on all available data; Prespecified and descriptive analysis. *18 month p values are descriptive in nature.


GATHER1: DECREASE IN GA GROWTH OVER 18 MONTHS ZIMURA 2 MG VS. SHAM (NON-SQUARE ROOT)

BIO

ITT Population; Based on LSMEANS from MRM Model, drawing on all available data, including data from groups with different randomization ratios in Part 1 and Part 2, and should not be interpreted as directly observed data; Prespecified and descriptive analysis. *18 month p values are descriptive in nature.

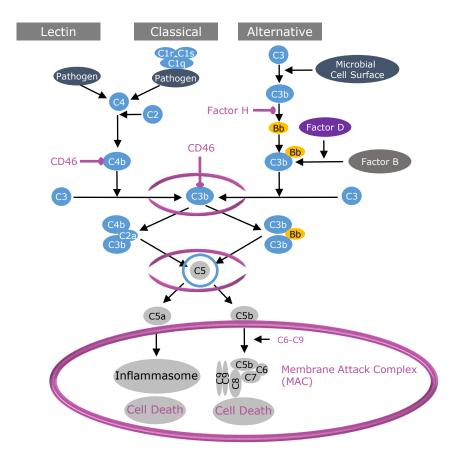
GATHER1: DECREASE IN GA GROWTH OVER 18 MONTHS ZIMURA 4 MG VS. SHAM (NON-SQUARE ROOT)

BIO

ITT Population; Based on the least squares means from the MRM Model drawing on all available data; Prespecified and descriptive analysis. *18 month p values are descriptive in nature.

GATHER1: PRELIMINARY SAFETY ANALYSIS THROUGH MONTH 18*

FAVORABLE SAFETY PROFILE TO DATE


- Zimura was generally well tolerated after 18 months of administration
- No Zimura related adverse events
- No Zimura related inflammation
- No drug related discontinuations from the trial attributed to Zimura
- No serious ocular adverse events in the study eye related to Zimura
- No cases of endophthalmitis reported in the clinical trial
- The most frequently reported ocular adverse events were related to the injection
 procedure
- Incidence of CNV in the untreated fellow eye was 11 patients (3.8%), and in the study eye was 3 patients (2.7%) in the sham control group, 2 patients (7.7%) in the Zimura 1 mg group, 8 patients (11.9%) in the Zimura 2 mg group, and 13 patients (15.7%) in the Zimura 4 mg group.

BIO

WHAT ARE THE POTENTIAL ADVANTAGES OF INHIBITING AT THE C5 LEVEL?

COMPLEMENT PATHWAY

IVERIC

BIO

Inhibit the 2 triggers of cell death, preserving the remainder of pathway

C5 INHIBITION: POTENTIAL SAFETY ADVANTAGES

- Complement C3a receptors play roles in endotoxemia, ischemiareperfusion, neurotrauma, and ALS models
- **C3aR is protective** in these models (knockout <u>worsens</u> disease)
- C3-CR3 is also protective in a retinal degeneration model
- Global blockade of C3 (as opposed to C5) may prevent the beneficial activities of C3a, while also increasing infection risk

IVERIC

BIO

C5 INHIBITION: POTENTIAL SAFETY ADVANTAGES

C3 INHIBITION: POTENTIAL FOR NEUROTOXICITY

"Deficiency of C3 or CR3 decreased microglial phagocytosis of apoptotic photoreceptors and increased microglial neurotoxicity to photoreceptors,..."

C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa

Sean M. Silverman, Wenxin Ma[®], Xu Wang, Lian Zhao[®], and Wai T. Wong[®]

Complement activation has been implicated as contributing to neurodegeneration in retinal and brain pathologies, but its role in retinitis pigmentosa (RP), an inherited and largely incurable photoreceptor degenerative disease, is unclear. We found that multiple complement components were markedly up-regulated in retinas with human RP and the rd10 mouse model, coinciding spatiotemporally with photoreceptor degeneration, with increased C3 expression and activation localizing to activated retinal microglia. Genetic ablation of C3 accelerated structural and functional photoreceptor degeneration and altered retinal inflammatory gene expression. These phenotypes were recapitulated by genetic deletion of CR3, a microgliaexpressed receptor for the C3 activation product iC3b, implicating C3-CR3 signaling as a regulator of microglia-photoreceptor interactions. Deficiency of C3 or CR3 decreased microglial phagocytosis of apoptotic photoreceptors and increased microglial neurotoxicity to photoreceptors, demonstrating a novel adaptive role for complement-mediated microglial clearance of apoptotic photoreceptors in RP. These homeostatic neuroinflammatory mechanisms are relevant to the design and interpretation of immunomodulatory therapeutic approaches to retinal degenerative disease.

WHAT IS THE LEVEL OF STATISTICAL CONFIDENCE FOR THIS PIVOTAL TRIAL?

GATHER1: ANALYZED GEOGRAPHIC ATROPHY DATA

DATA FROM 85% OF THE PATIENTS WERE INCLUDED IN THE MONTH 12 ANALYSIS

1

IVERIC

BIO

	N (%) ¹
Missing at baseline ²	1 (<1%)
Missing at 6 months and at 12 months ²	36 (14%)
Missing at 6 months only	11 (4%)
Missing at 12 months only	30 (12%)
No missing	182 (70%)
	260 (100%)

GATHER1: PRESPECIFIED MONTH 12 SENSITIVITY ANALYSES

REPLACE MISSING DATA USING MULTIPLE IMPUTATIONS, WITH AN ADDED "SHIFT" INCREASE UNTIL SIGNIFICANCE IS LOST

Zimura 2mg vs. Sham

Zimura 4mg vs. Sham

IVERIC

BIO

Data Imputation Method	Difference**	Р	Difference**	Р
No imputation (primary analysis)	0.110	0.0072*	0.124	0.0051*
Impute mean value of same arm	0.119	0.0005*	0.152	<0.0001*
Impute mean value of opposite arm	0.075	0.0309*	0.107	0.0033*
Impute mean value of both arms	0.097	0.0047*	0.129	0.0003*
Impute mean value of sham arm	0.093	0.0056*	0.120	0.0008*

GATHER1: SENSITIVITY ANALYSIS AT MONTH 12

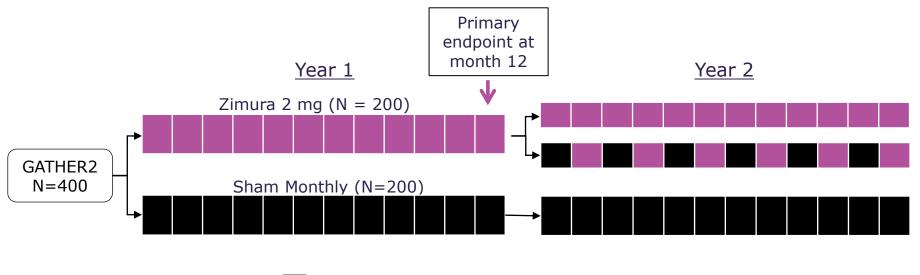
STATISTICAL INTERPRETATION

- All analyses showed small impact of missing data on our overall conclusion on the primary endpoint
- The shift imputation analyses showed that statistical significance would only be lost for large shifts (~40% of observed treatment effect)
- Analysis results were robust to missing data

WHAT DISTINGUISHES THE GATHER1 DATA IN A POST-COVID WORLD?

GA TRIALS POST-COVID

- We believe GATHER1 is the only pre-COVID positive Phase 3 trial for GA
- New environment for clinical trial execution: Recruitment/retention


GATHER2 CLINICAL TRIAL

GATHER2 (ISEE2008): TRIAL DESIGN

<u>PRIMARY EFFICACY ENDPOINT</u>: MEAN RATE OF CHANGE IN GA OVER 12 MONTHS MEASURED BY FUNDUS AUTOFLUORESCENCE (FAF) AT THREE TIME POINTS: BASELINE, MONTH 6, AND MONTH 12 (SQUARE ROOT TRANSFORMATION)

GATHER2: KEY OPHTHALMIC INCLUSION CRITERIA (STUDY EYE)

- <u>Non-foveal</u> GA secondary to dry AMD
- Total GA area ≥ 2.5 and ≤ 17.5 mm² (1 and 7 disk areas [DA] respectively), determined by screening images of FAF
- If GA is multifocal, at least one focal lesion should measure ≥ 1.25 mm² (0.5 DA)
- GA in part within 1500 microns from the foveal center
- The atrophic lesion must be able to be photographed in its entirety
- Best corrected visual acuity in the SE between 20/25 20/320, inclusive

GATHER2: KEY OPHTHALMIC EXCLUSION CRITERIA

- GA secondary to any condition other than AMD in either eye (e.g., druginduced)
- Any prior treatment for AMD or any prior intravitreal treatment for any indication in either eye, except oral supplements of vitamins and minerals
- Evidence of CNV in either eye
- If subject develops CNV in the SE during the course of the trial, the subject remains in the study and continues to receive Zimura/Sham treatment (in addition to the standard of care anti-VEGF)
- Any ocular condition in the SE that would progress during the course of the study that could affect central vision or otherwise be a confounding factor

GATHER1: STRENGTHS

- Patient criteria
 - Non-foveal GA: faster growing lesions as compared to foveal lesions
- Appropriate masking for Phase 3 trial
 - Patients; investigators; reading center; sponsor
- Pre-specified statistical threshold for "positive" Phase 3 clinical trial
 - One-sided significance level of p < 0.0125 in either arm (adjusted for multiplicity based on trial design)
- Early and continuous positive treatment effect over 18 months
- Favorable safety profile with 18 months of continuous treatment

IVERIC BIO PIPELINE

_	Indication	Res	Pre-clin	P1	P2	Р3	Milestones
Therapeutics	Zimura: GA secondary to AMD						 GATHER1 (1st Phase 3): Positive 12 & 18-month data reported GATHER2 (2nd Phase 3): Target completion of enrollment <u>3Q 2021</u>
	Zimura: Stargardt Disease						 Expanded enrollment (up to ~25 additional patients) ongoing
	IC-500 (anti-HtrA1): GA secondary to AMD						 Plan to file IND in <u>2H 2022</u>
AAV Gene Therapies	IC-100: RHO-adRP						 Plan to initiate Phase 1/2 in <u>2H 2021</u>
	IC-200: BEST1-related IRDs						 Plan to initiate Phase 1/2 in <u>2H 2021</u>
	miniCEP290: LCA10						 Identify lead construct in <u>20 2021</u>
	miniABCA4: Stargardt Disease*						 Additional results expected in <u>1H 2021</u>
	miniUSH2A: USH2A-related IRDs*						 Preliminary results expected in <u>1H 2021</u>

IVERIC

BIO

STARGARDT DISEASE

OPH2005: ZIMURA IN AUTOSOMAL RECESSIVE STARGARDT DISEASE – ONGOING

THE MOST COMMON INHERITED MACULAR DYSTROPHY IN BOTH CHILDREN AND ADULTS

- Phase 2b, randomized, double masked, sham controlled screening clinical trial
- Two arms:
 - Zimura 4mg
 - Sham
- ~ 95 subjects were previously enrolled for treatment with Zimura or sham for 18 months
- Primary Efficacy Endpoint
 - Mean rate of change over 18 months in the area of ellipsoid zone defect measured by en face SD-OCT
- Expanded enrollment (up to ~25 additional patients) ongoing

IC-500 HtrA1 Inhibitor

HTRA1 IN AMD

High Temperature Requirement A Serine Peptidase 1/ HtrA1Compelling target for Geographic Atrophy and other forms of AMD

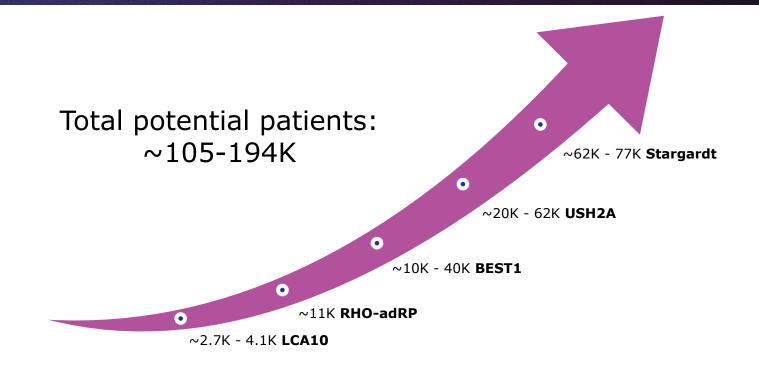
- AMD is highly heritable
 - Genetic component may account for 46-71% of risk
- Genome-Wide Association Studies (GWAS) highlight HtrA1 and

complement pathway as the major genetic contributors to disease

- HtrA1 risk alleles
 - Most compelling known genetic risk for early and late AMD

IVERIC

BIO


IC-500 OVERVIEW

- Rationale
 - Strong genetic link to age-related macular degeneration
 - HtrA1 expression and function
- HtrA1 target
 - RPE expression and protease function
- IC-500
 - Highly potent/specific inhibitor with favorable properties (e.g., inhibition of both intracellular and extracellular HtrA1)
 - Lead candidate currently in pre-clinical development

GENE THERAPY

LARGE POTENTIAL FOR PATIENTS WITH INHERITED RETINAL DISEASES (IRD)^{1,2}

¹ Estimated combined patient populations in US and EU5 for each indication based on published literature:

RHO-adRP estimate based on data from Arch Ophthalmology 2007 Feb; 125(2): 151–158./ BEST1-related estimate based on data from Ophthalmic Genet. 2017 ; 38(2): 143–147. doi:10.1080/13816810.2016.1175645 / LCA10 estimate based on data from various sources including Genetics Home Reference; Am J Hum Genet 2006 Sep; 79(3) 556-561; Gene Reviews, Leber Congenital Amaurosis, Last update May 2, 2013; Human Mutation, Mutation in Brief #956(2007) / Stargardt data from National Eye Institute, Genetics Home Reference and Progstar Natural History Study / USH2A estimates based on data from Experimental Eye Research Vol 79, Issue 2, Aug 2004: 167-173. ² Non risk-adjusted

IC-100: RHO-adRP PROGRAM SUMMARY

- Mutation agnostic approach
 - >150 identified rhodopsin (RHO) gene mutations
- Knockdown and replacement with a single AAV vector
 - Suppression of endogenous mutant, toxic rhodopsin protein
 - Replacement with healthy rhodopsin protein
- Proof-of-concept in two animal models (canine and mouse)
 - Naturally occurring canine disease model
 - Long-term preservation of retinal anatomy and function
- Phase 1/2 planned to initiate in 2H 2021

IC-200: BEST1 PROGRAM SUMMARY

- Only known gene therapy currently in development for *BEST1*-related IRDs
- Therapy provides replacement for dysfunctional *BEST1* gene allowing production of normal bestrophin protein
- Proof-of-concept established in naturally occurring autosomal recessive BEST1 canine model
- Phase 1/2 planned to initiate in 2H 2021

MINIGENE PROGRAMS

MINIGENE STRATEGY

- AAV Vectors
 - Extensive experience with intraocular application in both humans and animal models
 - Well-documented safety profile
 - Limited packaging capacity of <5kb

- Minigene Solution
 - Allows for the potential treatment of genetic diseases previously not amenable to
 AAV approach by delivering a smaller but still functional gene

MINICEP290: LCA10 POTENTIAL PRODUCT CANDIDATE

Significant Unmet Medical Need

- Estimated Prevalence: ~2.7K 4.1K in US & EU5 combined¹
- Most common cause of LCA with early onset of vision loss in both eyes
- Construct provides replacement for mutated *CEP290* gene with a novel minigene
- Preliminary proof-of-concept in mouse model
 - Preservation of retinal structure and function
 - $\sim 4.6x$ improvement in prolonging the functional rescue measured by ERG, extending the benefit from 3 to 14 weeks of age

2021 GOALS

- Complete enrollment for GATHER2 in 3Q 2021
- Investigate multiple dosing schedules for IC-500 (HtrA1) as part of expanding development-stage AMD franchise
- Advance IC-100 (RHO-adRP) and IC-200 (*BEST1*-related IRDs) into the clinic
- Continue to strengthen leadership team through strategic hiring

IVERIC

BIC

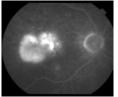
DEVELOPING TRANSFORMATIVE THERAPIES FOR RETINAL DISEASES

IVERIC BIC

March 2021 NASDAQ: ISEE

IVERIC BIC

AGE-RELATED MACULAR DEGENERATION: A LEADING CAUSE OF VISUAL DISABILITY


ALL AMD: ESTIMATED PREVALENCE

GA Secondary to Dry AMD: Estimated Prevalence in 2020 $~\sim 1.5$ Million in the US

Incidence of GA ~159,000/ Year (US)

Incidence of Wet AMD ~150,000/ Year (US)

IVERIC

BIO

Source for all AMD: Eye Vis (Lond) 2016;22;3:34. Source for GA and wet AMD: Am J Ophthalmol 2015; 160:85-9. Arch Ophthalmol. 2004;122(4):564-572.3.

"PREVENTING PHOTORECEPTOR LOSS": "CLINICALLY MEANINGFUL END-POINT"

2016 NEI/FDA Endpoints Workshops

NOV 09, 2016 BETHESDA, MARYLAND

AMD and inherited retinal diseases

OARVO. NEI/FDA ENDPOINTS Meeting Management WORKSHOP

NELFDA Endpoints Workshop on Retinal Diseases

, may be hardware based, software based, combina-creat, or mobile medical area. Nedical devices full into time closes, be toreed a match appendence whether develop of the merclases based on sits to pairines (Class I, B, or HD) and are sociated with variable levels of FDA overnight. Class III revices (higher tink) receive the most FDA overnight. Class I diagnostic devices include adaptometers (indicated or the treasurement of the time meted the revinal adaptation of the treasurement of the time meted the revinal adaptation. old) potention (ind ing the extent of the peripheral visual field of a and microperimetees (indicated for generating retinal mups). Class II diagnostic devices include optical an interroduct to take photographs of the ever and contents intereded in take phenographic of the rest and methy and the second phenomena in the second phenomena control for imaging universe instantones in the expert and the second phenomena in the second phenomena in the second phenomena is a second phenomena is a second phenomena is a second phenomena in the second phenomena is a second pheno

more for conductor indications, the super-

erends that images be taken from patients with various of the condition as well as disease-free individuals. The Id be compared with images obtained using legally reliate devices from the same eye, klotily by devs following standardized criteria. To obtain quantitative indications, the agressy recommenda-ice not only capture images, but also demonstrate atability and reproducibility) and agreement to need predicate device. Lastly, Mr. Canningham at FDA clearance does not imply that the agency industed evidence to apport all potential device and evaluated evaluence to support all potential device linical practice or studies. Hence, when diagnosti-are incorporated into clinical trails of therapeuti-

ghlights From Panel Q&A on Structural

br. Wiley Chambers, MD, Deputy Director of the Division of Themphani and Ophthalmising p Products of the Center or Drug Brackanion and Research (CBBC), reminded the tenders that under the agency's Investigational New biologic (bib) pathony it is sponsible to use a product to a listed trial as a means to seek eventual PDA approval out if the product is not liabled for this particular out-he approxy strongly encourages validation studies that result gather support for hisbling.

ion of whether GA onset might he

4045 | July 2017 | Yell SR | No. 9 | 3458 can be used in certain cases as the basis of an

re merent tydrinan, linerene of the agency's (Dilli Division of Ophthulmic and Jac, Now, and Throm Devices, ergenhaired that the agency often looks to the actentile commany for conserum on such thresholds. Hence, it would be up to investigation to dominate a consense threshold through well-controlled, reproduc Bit studies.

Bit endors. On the question of using uppercass measures such as drasen volume changes and step changes on the AME secondy scale, Dr. Chamberd' response was that this would not be recommended at the present time. Notwithisticating their usefulness for research studies, downers theaterbookies have not sorted as the basis of downers characteristics have not surred as the basis of approach of any products. The agency does some excessing different categories of AMD on the basis of this scale. Thus still, he solid, dissure characteristics might he world in defining patient correlationst criteria in crimical mist sus with further validation may serve as surrogate endpoints in train. At the present sime, he roots, drawner changes on in train.

ang changes on the AMD task would are the valid infrast time inceptions in any of relating approximation. In contrast, Day Hydrona solided that the AMD secretary and a could be hydrona solided that the AMD secretary and a could be drawn approximation of a solid problem of the solid secretary approximation of the solid secretary of the approximation of a solid problem of the solid secretary animations. Its populations contrasts in dwg and holding the approximation of the properties to a society descent of the approximation of the solid secretary of the solid society of the solid secretary of the solid secretary of acceptibility is contrastic in solid secretary of the acceptibility of the solid secretary of the solid secretary of acceptibility of the solid secretary of the solid secretary of the solid secretary is a solid secretary of the solid secretary of the solid secretary is a solid secretary of the solid secretary of the solid secretary is a solid secretary of the solid

given the variability in measuring visual function, the agency is willing to consider anatomic endpoints.

Structural Endpoints With Functional Associations in IRD Dr. David likeh reported on studies in which OCT images -

nial trial endpoint, Dr. Chambers surable change should be both ally significant, Parther, perchedy GA would be crucial, given the at studies. Surrogate endpoints. the object into represent the second of how a transition core of refinal insue that lies between the severity affected and healty regions and in which the E2 merger with the E8. The fieldings of that study severated that a decrease in E2 width is similated if areater than 0.64% (133) unit. Analysis of the E2

can be inset in certain cases as the basic of approval of a new product. Proceeding, physical concerning the exam-ple, would be considered a clinically transmight end-bases and variant functions. The threshold of each a threspectic effect remains to be established, but if phononeropies loss can be provented at least to the extense of the funcy boundary, as seen on OCT, proused the CAS below, that might be considered a potential strate endpoint. • De Malvina Eukinan, Director of the agency's CDBI

devices margine entropy regressions in the being used. Budly, Dr. Chambers: emphasized that for drug, and belogic approximation for against systems a clear parference for functional over nationsic evalpoints. Visual functions includies elements such as visual field, correst sensitivity, and other light sensitivity measures. That said, he added in the light sensitivity measures when flowerine. Bu-

OCT, around the GA lesion, that might be considered a potential

trial endpoint."

"Preventing photoreceptor

loss, for example, would be considered a clinically

meaningful end- point, given the established link between

photoreceptor loss and visual

a therapeutic effect remains

to be established, but if

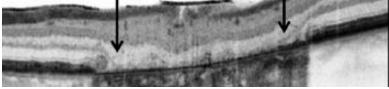
photoreceptor loss can be prevented at least to the extent

function. The threshold of such

of the fuzzy border, as seen on

Research Opportunities

Report From the NEI/FDA Endpoints Workshop on Age-**Related Macular Degeneration and Inherited Retinal** Diseases


Karl Csaky,¹ Frederick Ferris III,² Emily Y. Chew,² Prashant Nair,³ Janet K. Cheetham,⁴ and Jacque L. Duncan⁵

Photoreceptor Loss

IVERIC

BIO

Source: Investigative Ophthalmology & Visual Science January 2011, Vol.52, 1-6. Investigative Ophthalmology & Visual Science 2017 Jul 1;58(9):3456-3463.

GATHER1 BASELINE CHARACTERISTICS: GENERALLY BALANCED ACROSS COHORTS*

	Zimura 2mg N = 67	Sham for 2mg arm N = 110	Zimura 4mg N = 83	Sham for 4mg arm N = 84
Mean Age, Years	78.8	78.2	79.2	78.2
Female Gender, Number (%)	45 (67.2%)	79 (71.8%)	58 (69.9%)	61 (72.6%)
Active smoker, Number (%)	25 (37.3%)	36 (32.7%)	26 (31.3%)	29 (34.5%)
Non-Subfoveal GA, Number (%)	62 (92.5%)	104 (94.5%)	81 (97.6%)	82 (97.6%)
Mean GA Area, mm ²	7.33	7.42	7.90	7.45
Mean SQ Root GA Area, mm	2.62	2.63	2.72	2.64
Bilateral GA, Number (%)	67 (100%)	108 (98.2%)	83 (100%)	83 (98.8%)
Hyper Autofluorescence (%)	66 (98.5%)	109 (99.1%)	82 (98.8%)	83 (98.8%)
Mean BCVA (ETDRS Letters)	70.2	69.0	69.5	68.3
Mean LL BCVA (ETDRS Letters)	36.7	34.5	36.8	33.9
Low Luminance Deficit (BCVA-LL BCVA)	33.5	34.5	32.7	34.4
				IVERIC

BIO

EXTRAFOVEAL SHAM GROWTH: CHROMA/SPECTRI & GATHER1

NON-SQUARE ROOT TRANSFORMATION

	Sham Pooled		Lampalizuma	ab q4w				
Source	No. of Participants	Adjusted Mean (SE) Change	No. of Participants	Adjusted Mean (SE) Change	Difference in Adjusted Mean Change (95% CI)		Relative Reduction, %	
\ge, y								
<75	176	1.880 (0.082)	204	2.051 (0.076)	0.171 (-0.049 to 0.390)	⊢	-9.1	
75-84	266	1.998 (0.058)	249	2.035 (0.059)	0.038 (-0.125 to 0.201)	⊢	-1.9	
≥85	123	2.110 (0.100)	99	2.114 (0.109)	0.004 (-0.287 to 0.294)	⊢	-0.2	
5ex								
Female	336	2.076 (0.056)	334	2.096 (0.056)	0.021 (-0.135 to 0.177)	⊢ •−−1	-1.0	
Male	229	1.851 (0.067)	218	1.991 (0.069)	0.139 (-0.050 to 0.328)	⊢ ● − − − − −	-7.5	
Geographic region								
United States and Canada	344	2.007 (0.057)	345	2.144 (0.056)	0.138 (-0.019 to 0.295)	•	-6.9	
Western Europe	151	1.970 (0.080)	135	1.973 (0.085)	0.003 (-0.226 to 0.232)	⊢	-0.2	
Rest of world	70	1.907 (0.117)	72	1.788 (0.114)	-0.119 (-0.441 to 0.204)	⊢ − − − − −	6.2	
Baseline BCVA, letter score								
<64 (worse than 20/50)	208	1.936 (0.072)	222	1.942 (0.069)	0.007 (-0.190 to 0.203)	⊢	-0.3	
≥64 (20/50 or better)	351	2.018 (0.055)	327	2.133 (0.056)	0.116 (-0.038 to 0.269)	⊢–−−−−−−−−−	-5.7	
Baseline LLD, letter score								
<30	298	1.801 (0.058)	282	1.722 (0.059)	-0.080 (-0.242 to 0.082)		4.4	
≥30	250	2.198 (0.064)	254	2.426 (0.063)	0.228 (0.052 to 0.405)	⊢	-10.4	
Baseline GA area, DA								
<4	420	1.805 (0.050)	390	1.921 (0.052)	0.116 (-0.025, 0.257)	↓ ● ↓	-6.4	GATHER1
≥4	145	2.458 (0.085)	162	2.398 (0.080)	-0.060 (-0.289, 0.170)		2.4	•/
Baseline GA contiguity								
Multifocal	444	2.058 (0.050)	438	2.163 (0.050)	0.105 (-0.034 to 0.244)		-5.1	
Not multifocal	121	1.712 (0.080)	114	1.653 (0.081)	-0.059 (-0.282 to 0.165)	• • •	3.4	Mean change in
Baseline GA lesion location					,			
	306	1.720 (0.053)	294	1.746 (0.054)	0.025 (-0.123 to 0.173)		-1.5	extrafoveal GA
Nonsubfoyeal	259	2.292 (0.067)	258	2.401 (0.067)	0.109 (-0.077 to 0.295)		-4.8	
iobacco use history	200			2				2.29-2.77
Never	263	1.881 (0.061)	256	1.992 (0.061)	0.111 (-0.058 to 0.281)		-5.9	
Ever	302	2.074 (0.061)	296	2.112 (0.061)	0.038 (-0.132 to 0.207)		-1.8	
		1.984 (0.043)	552	2.055 (0.043)	0.071 (-0.049 to 0.191)		-3.6	

Values, mm² (95% CI)

IVERIC

BIO

eFigure 2. Adjusted Mean Change in Geographic Atrophy (GA) Area From Baseline to Week 48 in the Study Eye by Clinical Subgroup, Chroma and Spectri Pooled

Chroma/Spectri

Mean change in extrafoveal GA 2.292-2.401

Source: JAMA Ophthalmol. 2018 Jun 1;136(6):666-677. www.apellis.com 78

NONSUBFOVEAL/EXTRAFOVEAL SHAM GROWTH: CHROMA/SPECTRI/FILLY

SQUARE ROOT TRANSFORMATION

Change in GA Lesion Size at Month 12 **Baseline GA Lesion Characteristics**

IVERIC

BIO

	N	Greatest Progression>	Mean (SD)	Evaluation of Baseline Risk Factors on Progression in Geographic Atrophy
				Post-hoc Analysis from the FILLY Study
	Unifocal APL2-Monthly 19 APL2-EOM 22 Sham 24		0.27 (0.15) 0.19 (0.16) 0.38 (0.22)	Nathan Steinle, MD ¹ , Mohamed Hamdani ²
	Multifocal APL2-Monthly 48 APL2-EOM 36 Sham 42		0.25 (0.17) 0.32 (0.29) 0.35 (0.21)	¹ California Retina Consultants ² Apellis Pharmaceuticals
	Foveal APL2-Monthly 40 APL2-EOM 38 Sham 37 Extrafoveal		0.23 (0.16) 0.22 (0.22) 0.3 (0.16)	
Mean change in Sham (extrafoveal)	APL2-Monthly 27 APL2-EOM 20 Sham 30		0.3 (0.17) 0.37 (0.29) 0.44 (0.24)	Mean change in Sham (extrafoveal)
Filly: 0.44		0 0.2 0.35 0.5	0.7	GATHER1: 0.42-0.44
		Square-Root(GA) - Month 12 Change f Baseline	rom	

MIXED-EFFECT REPEATED MEASURES MODEL

- Used to assess the differences between Zimura 2mg or 4mg dose and their corresponding sham in rate of change of GA area (square root transformation) over 12 months
- The model included the following fixed and random effects:
 - Treatment: Sham vs dose
 - Study part (1 vs 2): only for 2 mg
 - Baseline VA: < 50 letters vs \geq 50 letters
 - Size of baseline GA: < 4 disc area vs \geq 4 disc area
 - Pattern of FAF at the junctional zone of GA: none/focal vs banded/diffuse
 - Visit (0, 6 mos or 12 mos) with unstructured correlation
 - Interaction terms between visit and all other factors

GATHER1: MEAN RATE OF CHANGE IN GA FOR ZIMURA 2 MG BY PART

Mean Rate of Change in Geographic Atrophy (GA) Area from Baseline t	to Month 12
(MRM Analysis) (Square Root Transformation)	

Cohort		Zimura 2mg (N = 25)	Sham 2mg (N = 26)	Difference
Part 1	Mean Change in GA ^(a) (mm)	0.329	0.422	0.093
(a) $=$ based on the l	east squared means from the MRM model			
		Zimura 2mg	Sham 2mg	
Cohort		Zimura 2mg (N = 42)	Sham 2mg (N = 84)	Difference
Cohort Part 2	Mean Change in GA ^(a) (mm)	0	0	Difference 0.114

Least square means are estimates from the MRM model, drawing on all available data, including data from groups with different randomization ratios in Part 1 and Part 2, and should not be interpreted as directly observed data.

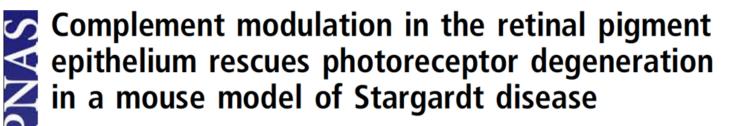
GATHER1: SENSITIVITY ANALYSIS

Several pre-specified sensitivity analyses conducted for primary endpoint:

- Replaced missing data using multiple imputations, with an added "shift" increased until significance is lost
- Replaced missing data by
 - Mean value of same treatment arm
 - Mean value of opposite treatment arm
 - Mean value of both treatment arms
 - Mean value of sham arm
- Replaced missing data using "pattern mixture model" (useful to investigate
 "missing not at random" accumptions)

"missing not at random" assumptions)

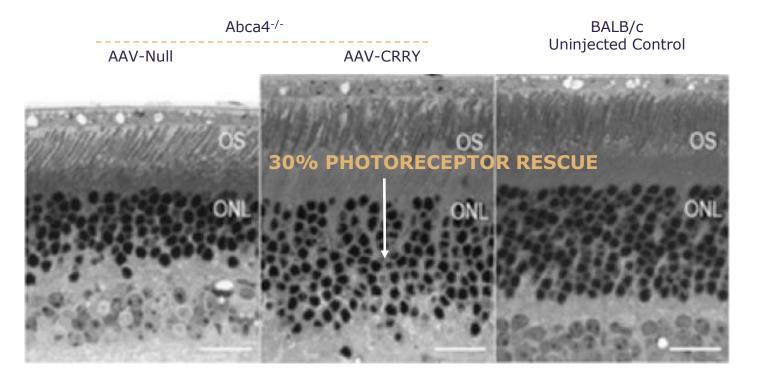
STARGARDT: PATHOPHYSIOLOGY AND PREVALENCE


- Stargardt disease is most commonly inherited in an autosomal recessive manner caused by mutations in the ABCA4 gene (STGD1)
- Estimated US & EU5 Prevalence: ~62K 77K
- The ATP binding cassette (ABC) transporters are the largest and most diverse membrane transport system and associated with many important biological processes as well as various severe pathological conditions
- ABCA4, also known as ABCR, is a 250-kDa glycoprotein and a member of the ABCA subfamily of ABC. During the visual cycle, in absence of ATP, ABCA4 binds with high affinity and clears N-retinylidene-phosphatidylethanolamine

Sources: Sources: Nat Genet. 1997; 15(3):236-46. BMC Med Genet. 2012; 3;13:67. Mol Med Rep. 2012; 6(5):1045-9. Annu Rev Cell Biol. 1992; 8:67-113. J Biol Chem. 2004; 279(52):53972-9. Estimate from National Eye Institute, Genetics Home Reference and Progstar Natural History Study

DECREASED COMPLEMENT ACTIVITY: RESCUED PHOTORECEPTORS

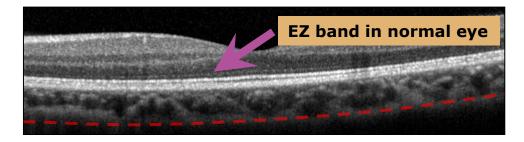
- "In this study, we attempted to protect cells against complement attack by increasing expression of CRRY in the RPE of Abca4^{-/-} mice"
- "CRRY is an important Complement Negative Regulatory Protein (CRP) in the mouse eye"

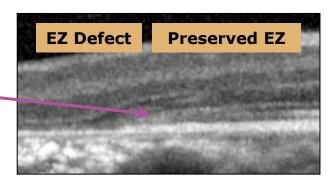

Tamara L. Lenis^{a,b,1}, Shanta Sarfare^{a,b,1,2}, Zhichun Jiang^{a,b}, Marcia B. Lloyd^{a,b}, Dean Bok^{a,b}, and Roxana A. Radu^{a,b,3}

IVERIC

RIC

COMPLEMENT INHIBITION RESCUES PHOTORECEPTORS


REPRESENTATIVE RETINAL IMAGES FROM 1 YEAR OLD ALBINO ABCA4-/- OR BALB/C MICE


IVERIC BIC

OCT – INCLUSION/EXCLUSION CRITERIA

- There is at least one location of \geq 250 µm EZ defect within the ETDRS subfields
- There are no areas of EZ loss outside the ETDRS subfields

Likely the A-scan threshold between absent/preserved EZ

